Raman minerals: Difference between revisions

From SoftwareGuy
Jump to navigation Jump to search
Mark (talk | contribs)
Created page with "== 266'ish Laser potentials == {| border="1" !Laser !Company !Web site |- |QUV-266-5, QUV-262-5 |CrystalLaser |http://www.crystalaser.com/laser/uv-laser.html |- |FQSS266-Q |CryLas |http://www.crylas.de/products/pulsed_laser_low.html |- |SNU-02P-100, SNU-20F-100, SNU-40F-100 |Teem Photonics |http://www.teemphotonics.com/products/laseroffe/microchipsfamily/266-nm.html |- |PULSELAS-P-1064-xxx |AlphaLas |http://www.alphalas.com/products/lasers/subnanosecond-passiv..."
 
Mark (talk | contribs)
No edit summary
Line 26: Line 26:
|http://laser-export.com/prod/389.html
|http://laser-export.com/prod/389.html
|}
|}
== Raman shift ==
In colloquial usage, Raman shifts are typically in [[wavenumber]]s, which have units of inverse length. In order to convert between spectral wavelength and wavenumbers of shift in the Raman spectrum, the following formula can be used:
:<math>\Delta w = \left( \frac{1}{\lambda_0} - \frac{1}{\lambda_1} \right) \ , </math>
where <math>\Delta w</math> is the Raman shift expressed in wavenumber, λ<sub>0</sub> is the excitation wavelength, and λ<sub>1</sub> is the Raman spectrum wavelength. Most commonly, the units chosen for expressing wavenumber in Raman spectra is inverse centimeters (cm<sup>−1</sup>). Since wavelength is often expressed in units of nanometers (nm), the formula above can scale for this units conversion explicitly, giving
:<math>\Delta w (\text{cm}^{-1}) = \left( \frac{1}{\lambda_0 (\text{nm})} - \frac{1}{\lambda_1 (\text{nm})} \right) \times 10^{7}, \text{effectively multiplying by } \frac{(\text{nm})}{(\text{cm})} . </math>
----
[[Laser_sources]]
----
[[Main_Page]] Main
[[Thermo]] Previous</text>
      <sha1>3qz37e6s3t5lj7g8148rzmnbkwceqdf</sha1>
      <model>wikitext</model>
      <format>text/x-wiki</format>
    </revision>
    <revision>
      <id>206</id>
      <parentid>205</parentid>
      <timestamp>2012-03-29T20:06:56Z</timestamp>
      <contributor>
        <username>Mark</username>
        <id>2</id>
      </contributor>
      <text xml:space="preserve" bytes="1045">== Raman shift ==
In colloquial usage, Raman shifts are typically in wavenumber's, which have units of inverse length. In order to convert between spectral wavelength and wavenumbers of shift in the Raman spectrum, the following formula can be used:
:&lt;math&gt;\Delta w = \left( \frac{1}{\lambda_0} - \frac{1}{\lambda_1} \right) \ , &lt;/math&gt;
where &lt;math&gt;\Delta w&lt;/math&gt; is the Raman shift expressed in wavenumber, λ&lt;sub&gt;0&lt;/sub&gt; is the excitation wavelength, and λ&lt;sub&gt;1&lt;/sub&gt; is the Raman spectrum wavelength. Most commonly, the units chosen for expressing wavenumber in Raman spectra is inverse centimeters (cm&lt;sup&gt;−1&lt;/sup&gt;). Since wavelength is often expressed in units of nanometers (nm), the formula above can scale for this units conversion explicitly, giving
:&lt;math&gt;\Delta w (\text{cm}^{-1}) = \left( \frac{1}{\lambda_0 (\text{nm})} - \frac{1}{\lambda_1 (\text{nm})} \right) \times 10^{7}, \text{effectively multiplying by } \frac{(\text{nm})}{(\text{cm})} . &lt;/math&gt;
----
[[Laser_sources]]


----
----
[[Main_Page]] Main
[[Main_Page]] Main
[[Thermo]] Previous
[[Thermo]] Previous

Revision as of 18:16, 19 March 2023

266'ish Laser potentials

Laser Company Web site
QUV-266-5, QUV-262-5 CrystalLaser http://www.crystalaser.com/laser/uv-laser.html
FQSS266-Q CryLas http://www.crylas.de/products/pulsed_laser_low.html
SNU-02P-100, SNU-20F-100, SNU-40F-100 Teem Photonics http://www.teemphotonics.com/products/laseroffe/microchipsfamily/266-nm.html
PULSELAS-P-1064-xxx AlphaLas http://www.alphalas.com/products/lasers/subnanosecond-passively-q-switched-dpss-microchip-lasers-pulselas-p-series.html
DTL-389QT Laser Export http://laser-export.com/prod/389.html

Raman shift

In colloquial usage, Raman shifts are typically in wavenumbers, which have units of inverse length. In order to convert between spectral wavelength and wavenumbers of shift in the Raman spectrum, the following formula can be used:

<math>\Delta w = \left( \frac{1}{\lambda_0} - \frac{1}{\lambda_1} \right) \ , </math>

where <math>\Delta w</math> is the Raman shift expressed in wavenumber, λ<sub>0</sub> is the excitation wavelength, and λ<sub>1</sub> is the Raman spectrum wavelength. Most commonly, the units chosen for expressing wavenumber in Raman spectra is inverse centimeters (cm<sup>−1</sup>). Since wavelength is often expressed in units of nanometers (nm), the formula above can scale for this units conversion explicitly, giving

<math>\Delta w (\text{cm}^{-1}) = \left( \frac{1}{\lambda_0 (\text{nm})} - \frac{1}{\lambda_1 (\text{nm})} \right) \times 10^{7}, \text{effectively multiplying by } \frac{(\text{nm})}{(\text{cm})} . </math>

Laser_sources


Main_Page Main Thermo Previous</text>

     <sha1>3qz37e6s3t5lj7g8148rzmnbkwceqdf</sha1>
     <model>wikitext</model>
     <format>text/x-wiki</format>
   </revision>
   <revision>
     <id>206</id>
     <parentid>205</parentid>
     <timestamp>2012-03-29T20:06:56Z</timestamp>
     <contributor>
       <username>Mark</username>
       <id>2</id>
     </contributor>
     <text xml:space="preserve" bytes="1045">== Raman shift ==

In colloquial usage, Raman shifts are typically in wavenumber's, which have units of inverse length. In order to convert between spectral wavelength and wavenumbers of shift in the Raman spectrum, the following formula can be used:

<math>\Delta w = \left( \frac{1}{\lambda_0} - \frac{1}{\lambda_1} \right) \ , </math>

where <math>\Delta w</math> is the Raman shift expressed in wavenumber, λ<sub>0</sub> is the excitation wavelength, and λ<sub>1</sub> is the Raman spectrum wavelength. Most commonly, the units chosen for expressing wavenumber in Raman spectra is inverse centimeters (cm<sup>−1</sup>). Since wavelength is often expressed in units of nanometers (nm), the formula above can scale for this units conversion explicitly, giving

<math>\Delta w (\text{cm}^{-1}) = \left( \frac{1}{\lambda_0 (\text{nm})} - \frac{1}{\lambda_1 (\text{nm})} \right) \times 10^{7}, \text{effectively multiplying by } \frac{(\text{nm})}{(\text{cm})} . </math>

Laser_sources


Main_Page Main Thermo Previous